Hot mix vs. Warm mix (Foaming) Dickinson County Iowa Jeremy Anderson

Global Warm Mix Asphalt Conference October 30th-31st, 2013 Coralville, Iowa

Project Details Dickinson County

•3 miles long

- •Haul distance 16 miles
- •3.5" Total Depth:
 - •2" Int. & 1.5" Surface
- Design
 - •1/2", 1 MIL ESAL, Type B Mix
 - 5% RAP/2.5% RAS (10.3% AC)
- •Fostoria Plant
 - •Parallel Flow Drum Plant
- •Mixed at 240-250 F
- •Lay down temps 220-230 F
 - •210-215 F were the lowest common readings

Process

- WMA Technology Used:
- Foamed Technology, Tarmac Tri-Mix System

- The asphalt plant was heated up to its normal starting temperature, initially producing hot mix.
- The Tarmac foaming system began injecting water through high pressure nozzles, at the same location as the oil is injected, to begin the foaming process.
- Within two hours the mix temperature leaving the plant dropped from 310 degrees to 260 degrees.
- As we monitored densities on the road, temperatures were dropped even lower, 230 degrees to 240 degrees.
- To start nothing in the paving process was changed, with the exception of closer monitoring by our QMA personnel. Paving speed and rolling patterns stayed identical to that of hot mix.
- It was very common to see temperatures of 215 degrees to 220 degrees directly behind the paver!

Mix Design

Form 955r ver. 7.13

Iowa Department of Transportation

Highway Division-Office of Materials

Proportion & Production Limits For Aggregates

County :	n	Project No.:		Date:	08/01/12									
Project Location:	From 310	th AVE. E	ast to Emmet Co. I	Mix Design No.:		ADC12-3005								
Contract Mix Tonnage: 4,825 Course: rmediate (Tr						Mix Size (in.):			1/2					
Contractor:	TRI-STA	TE PAV	ING Mix Ty	ype:	HMA (11	M ESAL), INT, 1/2								
Material	Ident #	% in Mix	x Produce	r & Locatio	m	Type (A or B)	Friction Type	Beds	Gsb	%Abs				
Sand	A30508	5.0%	Fostoria/Hallett M	faterials Co		А	4		2.624	1.15				
Screenings	A30508	40.5%	Fostoria/Hallett M	faterials Co		А	4		2.600	1.85				
Manf. Sand	AMN032	12.0%	Cottonwood, Cott	onwood Co	Southern N	А	2		2.636	0.21				
3/4 CA-5 3/4 Dust Free	AMN032	8.0%	Cottonwood, Cott	onwood Co	Southern N	А	2		2.633	0.30				
1/2 Chips	A76004	27.0%	Moore/Martin Ma	rietta		А			2.575	1.90				
RAP/RAS	8-0016/HV	7.5%	5% RAP/2.5% RA	AS (10.3% A	C)	А	4	1/2	2.550	1.76				
Type and Source of	Type and Source of Asphalt Binder: 58-28 Marathon Ashland P								Petroleum LLC (St Pa					

					COMPACTED N	IIXTURE				
Core	Station	CL Reference	W1 Dry (g)	W2 in H20 (g)	W3 Wet (g)	Diff.	G _{mb}	% of Gmm	Pa (%)	Thickness (in.)
1	11+06	5.6 N\E Drv	1,807.4	1,010.9	1,808.9	798.0	2.265	92.9	7.1	1.85
2	30+17	7.0 N\E Drv	1,734.3	971.2	1,735.9	764.7	2.268	93.0	7.0	1.85
3	57+24	2.8 N\E Drv	1,703.0	942.5	1,704.6	762.1	2.235	91.7	8.3	1.85
4	66+65	3.4 N\E Drv	1,562.0	863.4	1,563.6	700.2	2.231	91.5	8.5	1.85
5	95+58	8.2 N\E Drv	1,634.5	900.2	1,636.4	736.2	2.220	91.1	8.9	1.60
6	111+26	5.7 N\E Drv	1,496.4	834.8	1,497.7	662.9	2.257	92.6	7.4	1.75
7	126+11	1.5 N\E Drv	1,709.3	955.4	1,711.0	755.6	2.262	92.8	7.2	1.50
8	148+73	1.2 N\E Drv	1,746.1	982.6	1,747.3	764.7	2.283	93.6	6.4	1.75
		Course Placed:	Surf	ace (Travel Lar	ne)			Tested By:	Rick Hecke	enlively
	Intendeo	d Lift Thickness:	1.5	50			Avg. F	ield Density:		2.253
		Date Placed:	08/0	2/12			Avg	Avg. % of Gmm:		92.400
		Date Tested:	08/0	6/12			Avg. %	Field Voids:		7.60
Q.I.	(lower) =		0.965 x 2.4 0.0	138) — 2.25 122	3	=	4.53	\rightarrow	PWL (low	er) = 100.0
Q.I.	(upper) =	2	. <u>253 — (0.9</u> 0.0	0 <u>15 x 2.438</u> 022	3)	=	1.01	\rightarrow	PWL (upp	er) = 84.2
PWI	_ (total) =	10	0.0	+	84.2	_		100.0	=	84.2
								Pay	Factor =	1.000
	Tons of Mix fo	r PWL Field Void	ds Analysis (00.00	1,964	4.60	Fiel	d Voids Price	Adjustment =	:	\$0.00

TEMPERATURE, °F											
Time	7:00	9:00	11:00	1:00	3:00	5:00	7:00	Spec	Comply?		
Air Temp											
Binder Temp	302	302	302	302	302			260-330 °F	Yes		
Plant Temp	305	310	308	310	290	\leftarrow		245-330 °F	Yes		
Mat Temp								245-330 °F			

HMA Surface Results

WMA Surface Results

					COMPACTED N	IIXTURE				
Core	Station	CL Reference	W1 Dry (g)	W2 in H20 (g)	W3 Wet (g)	Diff.	G _{mb}	% of Gmm	Pa (%)	Thickness (in
1	9+64	2.3 S\W Drv	1,839.7	1,036.0	1,847.4	811.4	2.267	93.4	6.6	1.85
2	44+70	9.0 S\W Drv	1,714.3	957.8	1,715.6	757.8	2.262	93.2	6.8	1.85
3	58+25	1.0 S\W Drv	1,764.0	985.7	1,765.1	779.4	2.263	93.3	6.7	1.85
4	81+45	8.6 S\W Drv	1,744.6	966.2	1,745.8	779.6	2.238	92.3	7.7	1.85
5	104+09	8.5 S\W Drv	1,718.4	956.4	1,719.7	763.3	2.251	92.8	7.2	1.85
6	132+65	3.1 S\W Drv	1,710.1	950.3	1,712.8	762.5	2.243	92.5	7.5	1.85
7	148+09	4.3 S\W Drv	1,634.2	919.0	1,635.7	716.7	2.280	94.0	6.0	1.75
8	156+59	6.8 N\E Drv	1,747.6	969.6	1,748.8	779.2	2.243	92.5	7.5	1.85
		Course Placed:	Surf	ace (Travel La	ne)			Tested By:	Rick Heck	enlively
	Intended	Lift Thickness:	1.5	50			Avg. F	ield Density:		2.256
		Date Placed:	08/0	1/12			Avg	. % of Gmm:		93.000
		Date Tested:	08/0	2/12			Avg. %	Field Voids:		7.00
Q.I.	(lower) =	(0	0.965 x 2.4 0.0	<u>26) — 2.2</u> 5	56	=	6.08	\rightarrow	PWL (low	ver) = 100.0
Q.I.	Q.I. (upper) = $\frac{2.256 - (0.915 \times 2.426)}{0.014}$ = 2.59 \rightarrow PWL (upper) = 100.0									
PW	L (total) =	10	0.0	+	100.0	_		100.0	=	100.
								Pay	Factor =	1.04
T	ons of Mix for	PWL Field Void	ls Analysis (00.00 deducted)=	1,857	7.56		Field Void	s Incentive =	\$	2,191.92

TEMPERATURE, °F											
Time	7:00	9:00	11:00	1:00	3:00	5:00	7:00	Spec	Comply?		
Air Temp											
Binder Temp	302	302	304	302	304			260-330 °F	Yes		
Plant Temp	300	260	240	240	250	←	-	240-280 °F	No		
Mat Temp								215-280 °F			

Benefits of WMA vs. HMA

- Able to achieve more consistent field densities
 - Less roller passes
 - One less pass per roller
 - Lower emissions at plant
 - Higher crew moral
 - 40-50 degrees cooler in work area

Details of the Benefits

- Percent within limits (PWL) pay factor increased .
 - .02 on intermediate and .04 on surface.
- Film thickness increased
 - .5% or greater in every instance
- 16% percent reduction in fuel costs:
 - Burner fuel usage decreased from 1.74 gal per ton (226200 BTU's) to 1.45 gal per ton (188500 BTU's)
 - Savings of roughly \$0.44 per ton
- WMA had the more effective binder and higher film thickness with a tenth less liquid asphalt. This made the WMA lighter by about 1.2 lbs per CF, about 1% of the total weight. (Determined by volumetrics from lab QC testing of Gmb and Gmm.)

Minimal Downside

• Harder to loot and perform hand work with.

Seems "stickier"

WMA: The Coolest Thing In Asphalt

